University of Jordan School of Engineering Department of Electrical Engineering 1st Term – A.Y. 2017-2018

Course: Power Systems Quality – 0923788 (3 Cr. – Elective Course)

Catalog Data: Transients: impulsive and oscillatory. Long-duration voltage variations: overvoltage, under voltage, and sustained interruptions. Short-duration voltage variations: interruptions, sags (dips), and swells. Voltage imbalance. Voltage fluctuation. Power frequency variations. Wave distortion: dc offset, notching, noise interharmonics, and harmonics. Harmonic distortion, harmonic distortion indices, power and power factor, effects of harmonic distortional Mitigation of harmonics. Sources of harmonics and modeling. Computer tools for harmonic analysis . Monitoring power Quality. Solution to power quality problems. Standards and regulations/ Study Cases.

Prerequisites by

Course: None

Textbook:

• Dugan, McGranaghan, Santoso, and Beaty, "Electrical Power Systems Quality", McGraw-Hill, 2nd Ed., 2003

References:

- Francisco C. De Larose, "Harmonics and Power Systems", CRC 2006.
- Jos Arrillaga, Neville R. Watson "Power System Harmonics", 2nd Edition, John Wiley & Sons, Ltd, 2004.
- Schedule & 16 Weeks, 48 lectures, 50 minutes each (including exams).

Duration:

Course Objectives:

This course is designed to give the students a comprehensive overview of the phenomena of electric power system Quality and Harmonics.

Course Learning Outcomes and Relation to Program Learning Outcomes:

Upon completion of this course, the student will be able to:

- 1. identify and classify power quality disturbances, their causes, and their impact on electric equipment [i,ii]
- become familiar with the most important and widely used industry standards to control harmonic distortion levels as well as the terminology used in power quality engineering [i,ii, iii].
- 3. to recommend appropriate mitigation techniques for power quality problems [ii,iii].
- 4. understanding the definition and modeling of power system harmonics under nonsinusoidal situations [iii].
- 5. describe the different sources of harmonics such as DC and AC motor drives, large electric furnaces, electric welders, battery chargers, electronic ballasts, and switching mode power supplies [i,ii].
- 6. understand the effects of harmonics on the residential, commercial, and industrial customers [i, ii].

7. understand the principle of operation and design of single-tuned and high-pass passive filters as one of the most effective methods to mitigate the effects of harmonics [i, ii,iii,iv].

Course Topics:

Торіс	Description	Contact Hours
T.1.	Electrical Power Systems Quality Problems: Terms And Definitions.	3
T.2.	Voltage Sag, swell and Interruptions	6
T.3.	Long-Duration Voltage Variations	6
T.4.	Power System Harmonic Distortion and Power Quality Indices	6
T.5.	Harmonic Source Modelling	6
T.6.	Harmonic Mitigation & Control	6
T.7.	Harmonic Analysis	6
T.8.	Harmonic Filter Design	6

- **Computer Usage:** students are encouraged to write/use computer programs for mathematical modelling.
- Attendance: Class attendance will be taken and the University policy on absence will be followed.
- Assessments: Exams

Grading policy:

Semester work	60 %
Final Exam	40 %

Total 100%

Instructor:

Instructor Name	Office	Ext.	E-mail
Dr. Eyad A. Feilat	E 305	22839	<u>e.feilat@ju.edu.jo</u>

Program learning outcomes

- i Demonstate a sound, in-depth and up-to-date technical knowledge in the field of specialization.
- ii Ability to identify and solve engineering problems in their chosen field of study.
- iii Acquir the skills for continued professional development and independent self-study.
- iv Demonstrate the ability to communicate technical informatiom effectively and professionally both orally and in writing..

Last Updated: 2017-03-23